Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.

Identifieur interne : 000841 ( Main/Exploration ); précédent : 000840; suivant : 000842

Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.

Auteurs : Hisatoshi Kamitsuji [Japon] ; Takashi Watanabe ; Yoichi Honda ; Masaaki Kuwahara

Source :

RBID : pubmed:15461584

Descripteurs français

English descriptors

Abstract

VPs (versatile peroxidases) sharing the functions of LiP (lignin peroxidase) and MnP (manganese peroxidase) have been described in basidiomycetous fungi Pleurotus and Bjerkandera. Despite the importance of this enzyme in polymer degradation, its reactivity with polymeric substrates remains poorly understood. In the present study, we first report that, unlike LiP, VP from Pleurotus ostreatus directly oxidized two polymeric substrates, bovine pancreatic RNase and Poly R-478, through a long-range electron pathway without redox mediators. P. ostreatus produces several MnP isoenzymes, including the multifunctional enzyme MnP2 (VP) and a typical MnP isoenzyme MnP3. MnP2 (VP) depolymerized a polymeric azo dye, Poly R-478, to complete its catalytic cycle. Reduction of the oxidized intermediates of MnP2 (VP) to its resting state was also observed for RNase. RNase inhibited the oxidation of VA (veratryl alcohol) in a competitive manner. Blocking of the exposed tryptophan by N-bromosuccinimide inhibited the oxidation of RNase and VA by MnP2 (VP), but its Mn2+-oxidizing activity was retained, suggesting that Trp-170 exposed on an enzyme surface is a substrate-binding site both for VA and the polymeric substrates. The direct oxidation of RNase and Poly R by MnP2 (VP) is in sharp contrast with redox mediator-dependent oxidation of these polymers by LiP from Phanerochaete chrysosporium. Molecular modelling of MnP2 (VP) revealed that the differences in the dependence on redox mediators in polymer oxidation by MnP2 (VP) and LiP were explained by the anionic microenvironment surrounding the exposed tryptophan.

DOI: 10.1042/BJ20040968
PubMed: 15461584
PubMed Central: PMC1134804


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.</title>
<author>
<name sortKey="Kamitsuji, Hisatoshi" sort="Kamitsuji, Hisatoshi" uniqKey="Kamitsuji H" first="Hisatoshi" last="Kamitsuji">Hisatoshi Kamitsuji</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Takashi" sort="Watanabe, Takashi" uniqKey="Watanabe T" first="Takashi" last="Watanabe">Takashi Watanabe</name>
</author>
<author>
<name sortKey="Honda, Yoichi" sort="Honda, Yoichi" uniqKey="Honda Y" first="Yoichi" last="Honda">Yoichi Honda</name>
</author>
<author>
<name sortKey="Kuwahara, Masaaki" sort="Kuwahara, Masaaki" uniqKey="Kuwahara M" first="Masaaki" last="Kuwahara">Masaaki Kuwahara</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15461584</idno>
<idno type="pmid">15461584</idno>
<idno type="doi">10.1042/BJ20040968</idno>
<idno type="pmc">PMC1134804</idno>
<idno type="wicri:Area/Main/Corpus">000879</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000879</idno>
<idno type="wicri:Area/Main/Curation">000879</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000879</idno>
<idno type="wicri:Area/Main/Exploration">000879</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.</title>
<author>
<name sortKey="Kamitsuji, Hisatoshi" sort="Kamitsuji, Hisatoshi" uniqKey="Kamitsuji H" first="Hisatoshi" last="Kamitsuji">Hisatoshi Kamitsuji</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Takashi" sort="Watanabe, Takashi" uniqKey="Watanabe T" first="Takashi" last="Watanabe">Takashi Watanabe</name>
</author>
<author>
<name sortKey="Honda, Yoichi" sort="Honda, Yoichi" uniqKey="Honda Y" first="Yoichi" last="Honda">Yoichi Honda</name>
</author>
<author>
<name sortKey="Kuwahara, Masaaki" sort="Kuwahara, Masaaki" uniqKey="Kuwahara M" first="Masaaki" last="Kuwahara">Masaaki Kuwahara</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="eISSN">1470-8728</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthraquinones (chemistry)</term>
<term>Anthraquinones (metabolism)</term>
<term>Benzyl Alcohols (antagonists & inhibitors)</term>
<term>Benzyl Alcohols (metabolism)</term>
<term>Bromosuccinimide (chemistry)</term>
<term>Bromosuccinimide (metabolism)</term>
<term>Catalysis (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Isoenzymes (metabolism)</term>
<term>Manganese (antagonists & inhibitors)</term>
<term>Manganese (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (chemistry)</term>
<term>Peroxidases (metabolism)</term>
<term>Pleurotus (enzymology)</term>
<term>Pleurotus (growth & development)</term>
<term>Polymers (chemistry)</term>
<term>Polymers (metabolism)</term>
<term>Ribonucleases (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcools benzyliques (antagonistes et inhibiteurs)</term>
<term>Alcools benzyliques (métabolisme)</term>
<term>Anthraquinones (composition chimique)</term>
<term>Anthraquinones (métabolisme)</term>
<term>Catalyse (MeSH)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Manganèse (antagonistes et inhibiteurs)</term>
<term>Manganèse (métabolisme)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>N-Bromo-succinimide (composition chimique)</term>
<term>N-Bromo-succinimide (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (composition chimique)</term>
<term>Peroxidases (métabolisme)</term>
<term>Pleurotus (croissance et développement)</term>
<term>Pleurotus (enzymologie)</term>
<term>Polymères (composition chimique)</term>
<term>Polymères (métabolisme)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Ribonucléases (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Benzyl Alcohols</term>
<term>Manganese</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anthraquinones</term>
<term>Bromosuccinimide</term>
<term>Fungal Proteins</term>
<term>Peroxidases</term>
<term>Polymers</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Anthraquinones</term>
<term>Benzyl Alcohols</term>
<term>Bromosuccinimide</term>
<term>Fungal Proteins</term>
<term>Isoenzymes</term>
<term>Manganese</term>
<term>Multienzyme Complexes</term>
<term>Peroxidases</term>
<term>Polymers</term>
<term>Ribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Alcools benzyliques</term>
<term>Manganèse</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Anthraquinones</term>
<term>N-Bromo-succinimide</term>
<term>Peroxidases</term>
<term>Polymères</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Pleurotus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Pleurotus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Pleurotus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Pleurotus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcools benzyliques</term>
<term>Anthraquinones</term>
<term>Complexes multienzymatiques</term>
<term>Isoenzymes</term>
<term>Manganèse</term>
<term>N-Bromo-succinimide</term>
<term>Peroxidases</term>
<term>Polymères</term>
<term>Protéines fongiques</term>
<term>Ribonucléases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Models, Molecular</term>
<term>Molecular Weight</term>
<term>Oxidation-Reduction</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Masse moléculaire</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">VPs (versatile peroxidases) sharing the functions of LiP (lignin peroxidase) and MnP (manganese peroxidase) have been described in basidiomycetous fungi Pleurotus and Bjerkandera. Despite the importance of this enzyme in polymer degradation, its reactivity with polymeric substrates remains poorly understood. In the present study, we first report that, unlike LiP, VP from Pleurotus ostreatus directly oxidized two polymeric substrates, bovine pancreatic RNase and Poly R-478, through a long-range electron pathway without redox mediators. P. ostreatus produces several MnP isoenzymes, including the multifunctional enzyme MnP2 (VP) and a typical MnP isoenzyme MnP3. MnP2 (VP) depolymerized a polymeric azo dye, Poly R-478, to complete its catalytic cycle. Reduction of the oxidized intermediates of MnP2 (VP) to its resting state was also observed for RNase. RNase inhibited the oxidation of VA (veratryl alcohol) in a competitive manner. Blocking of the exposed tryptophan by N-bromosuccinimide inhibited the oxidation of RNase and VA by MnP2 (VP), but its Mn2+-oxidizing activity was retained, suggesting that Trp-170 exposed on an enzyme surface is a substrate-binding site both for VA and the polymeric substrates. The direct oxidation of RNase and Poly R by MnP2 (VP) is in sharp contrast with redox mediator-dependent oxidation of these polymers by LiP from Phanerochaete chrysosporium. Molecular modelling of MnP2 (VP) revealed that the differences in the dependence on redox mediators in polymer oxidation by MnP2 (VP) and LiP were explained by the anionic microenvironment surrounding the exposed tryptophan.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15461584</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>08</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1470-8728</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>386</Volume>
<Issue>Pt 2</Issue>
<PubDate>
<Year>2005</Year>
<Month>Mar</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.</ArticleTitle>
<Pagination>
<MedlinePgn>387-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>VPs (versatile peroxidases) sharing the functions of LiP (lignin peroxidase) and MnP (manganese peroxidase) have been described in basidiomycetous fungi Pleurotus and Bjerkandera. Despite the importance of this enzyme in polymer degradation, its reactivity with polymeric substrates remains poorly understood. In the present study, we first report that, unlike LiP, VP from Pleurotus ostreatus directly oxidized two polymeric substrates, bovine pancreatic RNase and Poly R-478, through a long-range electron pathway without redox mediators. P. ostreatus produces several MnP isoenzymes, including the multifunctional enzyme MnP2 (VP) and a typical MnP isoenzyme MnP3. MnP2 (VP) depolymerized a polymeric azo dye, Poly R-478, to complete its catalytic cycle. Reduction of the oxidized intermediates of MnP2 (VP) to its resting state was also observed for RNase. RNase inhibited the oxidation of VA (veratryl alcohol) in a competitive manner. Blocking of the exposed tryptophan by N-bromosuccinimide inhibited the oxidation of RNase and VA by MnP2 (VP), but its Mn2+-oxidizing activity was retained, suggesting that Trp-170 exposed on an enzyme surface is a substrate-binding site both for VA and the polymeric substrates. The direct oxidation of RNase and Poly R by MnP2 (VP) is in sharp contrast with redox mediator-dependent oxidation of these polymers by LiP from Phanerochaete chrysosporium. Molecular modelling of MnP2 (VP) revealed that the differences in the dependence on redox mediators in polymer oxidation by MnP2 (VP) and LiP were explained by the anionic microenvironment surrounding the exposed tryptophan.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kamitsuji</LastName>
<ForeName>Hisatoshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Takashi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Honda</LastName>
<ForeName>Yoichi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuwahara</LastName>
<ForeName>Masaaki</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000880">Anthraquinones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001592">Benzyl Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>68816-54-6</RegistryNumber>
<NameOfSubstance UI="C017971">poly R-478</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D012260">Ribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K8G1F2UCJF</RegistryNumber>
<NameOfSubstance UI="D001974">Bromosuccinimide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MB4T4A711H</RegistryNumber>
<NameOfSubstance UI="C042197">veratryl alcohol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000880" MajorTopicYN="N">Anthraquinones</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001592" MajorTopicYN="N">Benzyl Alcohols</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001974" MajorTopicYN="N">Bromosuccinimide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020076" MajorTopicYN="N">Pleurotus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012260" MajorTopicYN="N">Ribonucleases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15461584</ArticleId>
<ArticleId IdType="pii">BJ20040968</ArticleId>
<ArticleId IdType="doi">10.1042/BJ20040968</ArticleId>
<ArticleId IdType="pmc">PMC1134804</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1994 May 10;33(18):5545-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Apr 1;376(1):171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10729203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Jan 1;373(1):147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Feb;259(3):626-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Feb 17;37(7):2029-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9485329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Mar;62(3):1070-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Apr 15;237(2):424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Mar;65(3):916-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Aug;65(3):287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14767623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Apr 25;1339(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2001 May;29(Pt 2):116-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11356138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Aug;64(8):2788-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9687431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Mar 12;41(10):3498-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11876658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1995 May;23(2):262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7672286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 25;268(6):4429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8440725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 May 29;428(3):141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9654123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Honda, Yoichi" sort="Honda, Yoichi" uniqKey="Honda Y" first="Yoichi" last="Honda">Yoichi Honda</name>
<name sortKey="Kuwahara, Masaaki" sort="Kuwahara, Masaaki" uniqKey="Kuwahara M" first="Masaaki" last="Kuwahara">Masaaki Kuwahara</name>
<name sortKey="Watanabe, Takashi" sort="Watanabe, Takashi" uniqKey="Watanabe T" first="Takashi" last="Watanabe">Takashi Watanabe</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Kamitsuji, Hisatoshi" sort="Kamitsuji, Hisatoshi" uniqKey="Kamitsuji H" first="Hisatoshi" last="Kamitsuji">Hisatoshi Kamitsuji</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000841 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000841 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15461584
   |texte=   Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15461584" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020